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A laminar boundary layer on a rotating 
three-dimensional blade 
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The laminar boundary layer on a rotating thin blade of an axial turbomachine 
is discussed, A method of deriving the basic equations of the flow for a generalized 
blade configuration is described, treating a typical blade in practical use as an 
example. A perturbation technique is applied to obtain a series solution com- 
posed of two groups of similar functions. The results give insight into the pro- 
perties of the boundary layer on helical non-loaded blades in a uniform stream, 
indicating the influence purely of thee-dimensionality of the blade configuration. 

1. Introduction 
The laminar boundary layer on a rotating blade such as arotor blade of an axial 

turbomachine or a helicopter rotor was first studied by Fogarty ( 195 1) and further 
detailed studies have been performed by many authors in the last decade. 
Fogarty approximated the rotating blade by a flat plate which rotates in its plane 
about an axis perpendicular to its leading edge and gave a solution which is valid 
in the region far from the axis of rotation. Generally, this boundary-layer flow is 
three-dimensional because of the centrifugal force due to rotation, but in 
Fogarty’s solution, the so-called independence principle holds with regard to the 
spanwise and the chordwise flow. Tan (1953) extended Fogarty’s work and pre- 
sented a series solution which is valid in a region nearer to the axis of rotation. 

Bogdanova (197 1) and Takematsu (1972) studied the case of an aerofoil blade 
of finite thickness. Toyokura & Harada (1969) made an approximate analysis by 
means of integral equations including the case of a turbulent boundary layer. 
Furthermore, McCrosky & Yaggy (1968) treated the case of a helicopter rotor 
with translational and hovering motion. However, in all these studies the analysis 
is simplified by the assumption that the blades are two-dimensional. 

The rotor blade of an axial turbomachine is generally twisted so that the angle 
of attack has a specified value which varies in the spanwise direction. Horlock & 
Wordsworth (1965) analysed the laminar boundary layer on a thin helical blade 
whose blade angle, or the inclination of a blade element to the axial flow direction, 
is constant everywhere on the blade surface, although the blade is three- 
dimensional. They could formulate successfully the effect of stagger on the 
laminar boundary layer, but the effect of twist, namely, the effect of spanwise 
variation of the blade angle, could not be taken into account. 
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The present analysis deals with the laminar boundary layer on a rotating blade 
which is twisted with the centre of twist a t  the leading edge, so that the angle of 
attack becomes zero everywhere a t  the leading edge. The blade is assumed to be 
infinitely long and the effect of the hub and casing walls on the boundary-layer 
flow is not taken into account. 

2. Blade configuration and co-ordinate systems 
Consider a thin blade with a straight leading edge which rotates in a uniform 

stream U with angular velocity w as illustrated in figure I. Take a right-handed 
rectilinear co-ordinate system ti fixed to the leading edge in which the &, and [, 
axes are the axis of rotation and the leading edge, respectively. I n  this paper all 
the vector components having subscripts represent covariant components and 
those with superscripts contravariant ones. To avoid confusion, any quantity A 
raised to the power n will be denoted by (A)". 

Many kinds of blade configuration meet the condition that the angle of attack 
becomes zero along the leading edge. This paper adopts the configuration which 
is specified by the curved surface defined by the following equations: 

t1 = x1 cos 4, 5, = x1 sin 4, 5, = x3, (1) 

t a n 4  = U/wx,, (2) 

in which x, and t3 have the same origin and the origin of x1 lies on the leading edge, 
namely, on the t3 axis. Equation (2) is derived from consideration of a velocity 
triangle a t  the leading edge. The angle 4 is the angle between the uniform 
approaching flow and a straight line x, = constant on the blade surface. Take the 
third co-ordinate axis x2 perpendicular to the x, and x, axes such that they consti- 
tute a right-handed system. On the blade surface, the x2 axis is coincident with 
the normal to the blade surface. I n  the limiting case x3 = 0,  the blade element lies 
on the 6, axis or on the axis of rotation and in the other limiting case x3+ CO, or 
sufficiently far from the axis of rotation, the blade becomes a flat plate. 

The direction cosines of a line x1 = constant on the blade surface are 

I, = x1 sin2 $ cos #IS, m3 = - x1 sin 4 cos2 $IS, n3 = x3/S, (3) 

where S = {(x,)~ + (xl)2sin24 cos2$}+. Those for a line x, = constant on the blade 
surface are 

1, = cos 4, m, = sin 4, n, = 0. (4) 

From (3) and (4), one has ZlI,+mlm,+nln3 = 0, which means that the lines of 
constant x, and x3 form an orthogonal curvilinear mesh on the blade surface. 

The direction cosines of the x2 axis are 

I, = - x, sin $18, m2 = x2 cos $IS, n2 = x1 sin $ cos $IS. (5) 

An arbitrary point in space expressed in & co-ordinates is given in xi curvilinear 
co-ordinates by using these relations as 

El = xlcos$+x21,, & = x,sin4+x,m2, t3 = x3+xzn,. (6) 
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This curvilinear co-ordinate system is orthogonal on the blade surface, but not 
a t  any point detached from the surface. Covariant base vectors are taken in the 
directions of the positive xi axes and one can calculate the metric tensor for the 
xi co-ordinate system from (6).  The set of covariant components is 

g11 = + 0 { ( x 2 ) 2 } ,  g12 = g21 = O ,  g13 = g31 = 2x2 sin $ cos $/S + o{(x2)2} ,  

9 3 2  = g23 = O ,  
g,, = 1 + (X1/x3)2sin2 q5 cos2 9 - 4(x1/x3) x2 sin 9 C O S ~  $/X + O{(X,)~} 

and that of contravariant components is 

9 2 2  = ] (7) 

9x1 = 1 + 0{(x2)2}, g12 = g21 = 0, 

g33 = ( x ~ ) ~ / ( S ) ~  + 4x,~,(x,)~sin$ COS~$/(X)~+O{(X,)~}, 

g x 3  = g31 = 2x2(x3)2sin q5 cos $ / ( A Y ) ~  + O{(x,)2}, g 2 2  = 1, 1 (8) 

where O { ( X , ) ~ )  means the small terms of order smaller than ( x ~ ) ~ ,  x2 being con- 
sidered to be small in the framework of boundary-layer theory. The Christoffel 
functions of the first kind rk,ii and the second kind rfk are calculated from (7 )  
and (8). The rlk are as follows: 

3. Equation of motion and equation of continuity 

system whose angular velocity is w is, in vector form, 
The equation of motion of incompressible flow relative to a rotating co-ordinate 

V ( p / p + $ ( ~ ) ~ - * ( r u ) ~ )  +V x w x w = - VV x (V x w) - 2 0  x w, ( lo)  

where w is the relative velocity vector, of magnitude w, r the distance from the 
axis of rotation, p the static pressure and p and v the density and kinematic 
viscosity, respectively. The tensor expression in contravariant form of (1 0) can 
be obtained by taking components of each term of (10) in the direction of the 
covariant base vector &. It is 
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FIGURE 1. Blade configuration and co-ordinate systems. 

and ersi is the permutation tensor, the wi are contravariant relative velocities 
which are related to the physical components 8, according to 

wi = di/4gii (no summation convention) (12) 

(13) 

and w : ~  is the covariant differential of wi defined by 

Wii = awpxi + rjkwk. 

w, = w . g, = W;(ap/ax,), 

w, in (1 1) is related to  the rectilinear components w z  of w by 

and the w; are, owing to the definition of the ti co-ordinate system, given by 

w: = 0, w; = - w ,  w 3 =  0. (14) 

The covariant components w, in (1 1) can be obtained in terms of the wj as 

w, = g,, wj. 

Whence (1 1)  is regarded as the equation of motion for the contravariant relative 
velocities wj. 

The tensor expression for the equation of continuity V.  w = 0 is 

w,ii = o or a(gW)/ax, = 0, (15) 

where g = lgijl = {1+(~, /~,)2sin~r$cos~r$}+O(x~).  
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4. Boundary-layer equations 
The usual boundary-layer approximation is carried out for (11) and (15)) 

assuming that the Reynolds number is sufficiently large. I?$, which appear in 
the scalar form of those equations are expanded in power series in x2. The terms 
in (x2)0 are retained, being of order of magnitude unity, and all other terms are 
omitted. The resulting boundary-layer equations are, after a little laborious 
calculation, 

I 

% J ( X , ) ~  w1 cos $ 
{(x,), + ( X J ~  sin2 4 cos2 4)  

- + 
aplax, = 0, 

where I&, Pi3, r:,, gll and g3, are given by (8) and (9) with the higher-order 
infinitesimal terms omitted. Similarly, the equa,tion of continuity becomes 

(17) 
awl aw2 aw3 x1 sin2 4 C O S ~  4 ( w1x3 - 2 ~ 3 ~ ~  C O S ~  4)  -+-+- = - 
ax, ax, ax, x,{(x,)~ + (x1)2 sin2 4 cos2 $1 

In the limit x3+00, 4 + 0, and (16) and (17) become 

aP awl aw2 aw3 
ax2 - 0, ax, ax, ax, 
_ -  -+-+- = 0. J 

Solution of these equations gives the contravariant velocities, but these velocities 
are coincident with the physical ones in the limit $ + 0, since gll -f 1 and gS3+ 1 
then. Equations (18) may also be obtained simply by putting 4 = 0 in (16) and 
(17)) and are the fundamental equations that all the previous authors except for 
Horlock & Wordsworth used as the starting point of the analysis. The problem 
considered in the present analysis is a more general case which includes the case 
4 = 0 as a special one, and the solution for q3 = 0 is obtained easily from the 
solution given below simply by putting p = 0, p being the parameter representing 
the three-dimensionality of the blade contained in the solution. The above- 
mentioned technique is applicable for any other blade configuration if one is 
ready to handle the slightly more complicated mathematics which arise from the 
non-orthogonality of the curvilinear co-ordinate system. 
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5. The mainstream flow 
Equations (16) and ( 1  7 )  can be solved with any kind of mainstream flow in 

principle. In  general, pressure variation along a blade element is determined by 
the mainstream potential flow. However, for the purposes of the present analysis, 
it is advantageous to  adopt as simple a flow as possible. In  this study, it is 
assumed that each streamline is the intersection of the blade surface and a 
circular cylinder whose centre-line is a t  the axis of rotation and that the magni- 
tude of the velocity is constant. This mainstream flow is, in an exact sense, 
a hypothetical one and the blade is slightly loaded. To analyse the effect purely 
of three-dimensionality of a blade, the best way may be to adopt a helical blade 
with constant velocity along a blade element and with the pressure constant 
everywhere in the flow field. But the difference between this ideal case and the 
present one manifests itself in terms smaller than (xl/x3)4 of the series solution 
given below. 

Now, the streamlines can be specified as 

( t 1 ) 2 +  ( t 3 ) 2  = constant, 
(19) 

= xlcos$, c2 = xlsin$, t3 = x3, \ 
t a n 4  = ~/wx, ,J  

which defines a three-dimensional curve, the direction cosines of which relative 
to the .& axes are 
I, = -(x3)2cos4/T, wzT = -sinq5{(x3)2+ (x1)2cos2r$)/T, nT = xlx3cos2r$/T, 

(20) 
where 

The magnitude TV of the velocity of the mainstream flow is constant as is assumed 
above, and is given by 

T = {(x3)4+(xl)4sin24cos4$+ (x1)2(x3)2cos24(1 +sin2$)',:. 
A 

T@ = {( U ) 2  + ( r ~ ) ~ } *  = [ ( ~ ) ~ { ( 2 ~ ) ~  cos2 $ + + (U)21i.  (21) 
A 

The physical components W,  in the xi directions are calculated to be 
A h  A 

?@ = T? (~l~T+mlm,+nlnT),  = 0, = ~ ( ~ , ~ ~ + m ~ m ~ + n ~ n ~ ) ,  

and may be transformedinto the contravariant components Wi according to (12): 

W1 = {(~~)2+(x])~sin2$cos2q5) 

(@)2{(x1)2 cos2 $ + @3121 + (UI2 

w2 = 0, 

The equation of motion that these velocities satisfy is obtained by neglecting 
viscous terms and putting x2 = 0 and wi = Wi in (16).  This gives 

a w3 2w W1(X3)2COS q5 + w 3  - + 2173, w 3  w3 + 2r!3 w1 w3 + a w3 
W1- 

8x1 8x3 + ( x ~ ) ~  sin2 Q cos2 $ ' 
- (w)2x3 = ( - $733/P) app.3, 

which enables one to eliminate the pressure term and the centrifugal term in (16). 
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The boundary conditions for (16) and (17) are obtained from the no-slip condi- 
tion a t  the wall and matching wi with W i  at x2-tco, and are as follows: 

w1= w2 = w3 = 0 at x2 = 0, 

w1-+ WI, w3-t W3 as x2-+00. 

6. The solution of the boundary-layer equation 
Let the characteristic lengths in the x1 and x3 directions be c and Lrespectively 

and consider the case where F = c/L 4 1.  In  the limit e+ 0, W 1 ~  xlw and 
W3 - xQw, so that, taking e as the perturbation parameter, one can expect a 
solution of the form 

As for w2, the expansion 

is possible, since w2 - (SIC)  wl, S being the thickness of the boundary layer, whose 
order of magnitude is 6 - (cv/Lo)t .  In  the expansion given above, the G&) are 
of order one and wtk,, Wfk) and wpk) are of order ek, 8ek and ek respectively. The 
components of the metric tensor and other terms concerning the mainstream 
flow are also expanded in power series in x1/x3. Introducing a non-dimensional 
length 2$ of order one, defined as 

quant'ities such a,s, say, COS$ are expanded as 

All these series are substituted into (16) and (17) .  Collecting the terms in ek, one 
finds that the order-k velocities must satisfy the following equations: 

XI = cd,, x2 = CSZ2, x3 = Ld3, 

COS $h = 1 - Q € 2 ( K / 2 3 ) 2  + &4(K/23)4 + . . ., K = U / W C .  

Q - Q - 0, Q, = - aw&/ax3, Q3 = -awLlaX3) 0 -  1- 
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The mainstream flow is expanded in the similar manner: 
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-=  W1 1 + -  1 (-)z x1 ($2-- 1 (-)4 x1 ($4+ ...) 1 (28) 
x3 ” 2 x3 8 23 

w3 1 XI 

- x 3  w = - - 2 ( --)3 ($) + k) [ 3 8 (9 x1 - (f) 2, + . . .] , 
where p = U/w,  which gives the following boundary conditions for u&j: 

(29) 

To solve this system of equations, the independent variable x2 is transformed 
I wtk) = wfk) = w:k) = 0 a t  22 = 0, 

as x2+m I ?qO) + 1, Gt1) -+ 0, q2) -+ $(@/x1)2, . . . 
q1) 3 1, q,, -+ 0, q3, -+ - &(p/xl)2, . . . 

to 7 according to 

and the wtk) are divided into terms composed of similar functions as follows : 

7 = X2(X3W/VXl)k ( 30) 

w:kl = (X1/X3)k{Uhk’(7) + (p/xl)z~u(2k’(7) + ... + (p/xl)mu$J(7)],  

w?f6, = (x1/x3) {OO (7) + (p/xl)2v!?k’(7) + ... + (p/xl)7nvg)(T)], 
w?kJ = (x1/x3)L {w$k’(7) + (p/x1)2 whk’(7) + ... -k (p/xl)m wg!kl(7)}j 

(31) 
k (Ic’ 

where m = k or k - 1, whichever is an even integer, and wL, = 0. 

equation of continuity, namely, 
For k = 0, the stream function $@)is introduced so as to satisfy the zero-order 

where a prime indicates a derivative with respect to  7.  fo(y) is the well-known 
function representing the’ laminar boundary layer along a flat plate, na.mely, 
Blasius flow. 

For k = 1,  the stream function $(l) related to ubl) and vf) by 

i T x w * a ? p  vh” = _ -  - i a p )  u(1) = -__ ( Y  ) ax, O x1 ax, ’ X1 

satisfies the first-order equation of continuity. Substitution of 
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which gives the solutionf,(q) = 0. For the first-order cross-flow, (27) and (28) 
give 

(34) I 2g~+fog’;-2fog’; = q2.f;- I), 

Sl(0) = g;(o) = 0, d ( W )  = - 1, 
in which wil) = gi(7). 

The zero-order solution gives the flow only in the x, direction and the first-order 
solution gives the cross-flow that corresponds to the zero-order x,-wise flow. 
Similarly, at higher order, even-order solutions give higher-order modifying flows 
only in the x1 direction and the odd-order solutions give the higher-order cross- 
flows corresponding to the x,-wise flows that are one order lower than themselves. 
fo(q) and gl(q) are the lowest pair of this infinite set and contain no influence of 
three-dimensionality of the blade neither in the equations themselves nor in the 
boundary conditions. These flows are the ones given by Fogarty and also the first 
two terms of Tan’s solution. 

For k = 2, wb, = 0, and two stream functions $i2) and $!!) defined by 

are introduced so as to satisfy the second-order equation of continuity. Put’ting 

and substituting them into the second-order equations of (27), one gets the 
following differential equations and boundary conditions for the similar 
functions f z 0 ( q )  and f Z z ( q )  : 

(35) 

(36) 

1 2f4 +fo& - 4fXO + 5f’Lfo = X g l -  49; - 2 + ?fAg;, 

f 2 0 ( 0 )  = fLO(0) = 0, fLo(W) + 0, 

I 2flL + f o f i 2  +f22f:  = 0, 

fZZ(0) = fLZt0) = 0, fL2(W) -+ 4. 
Then, up = fiO(7), up = f’ 22 ( r ) -  

For k = 3, @3) = wT3, = 0 and the third-order cross-flows represented by similar 
functions wi3j = gAo(r]) and wi3) = gA3(q) are obtained from the solution of 

(37) 

(38) 

2g& +fo d o  - 6fh d o  = - 5f20 9; + 2fL g; + 20 

y3O(O) = g;O(O) = ‘7 gh(O0) 4f’ ‘7 +g1g’;3} 

2 d 3  + f O d 3  - 2f;s& = -figs: + 2 f L d  + 4fL2 - %, 
933(0) = g a o )  = 0, &(a) + 8. 

The higher-order flows are obtained by exactly the same operations as those 
used above to reduce the partial differential equations (27) to a set of ordinary 
ones, for each order of flow. 
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FIGURE 2. Functions fzk.m(q).  

The resulting contravariant velocities w1 and w3 are expressed in terms of 
fkl(q) and g A q ) ,  according to 

w1/x30 = fh(7) + (x1/x3)2 {f;;O(q) + (P/rl)2fkZ(r)> 

1 (39) I 
f (xi/23)4(fio(q) + (P/xi)2f&q) f (P/21)4fi4(q)} + ...> 

w3/x30 = (x1/x3)g;(q) + (x l /x3 )3 {g&(7)  + (P/z1)2gh(r)} 

+ (x1/53)5(gSl(r) + (P/X1)2gk3(r) + ( P / ~ ~ ) ~ f & ( r ) )  + ..- . 

8, = w1, G3 = { 1 + (x,/x3)2si.n2 4 cos2 #}+ w3. 

These contravariant velocities are transformed into physical ones by 

(40) 

Among the similar functions introduced above, gl(q) was numerically com- 
puted by Fogarty and f2,,(q) by McCrosky & Yaggy. The functions whose second 
subscript is zero, such asfzO(q),f4,,(q), ..., and those whose second subscript is 1, 
such as g31(y), g51(r), ..., are sufficient to express the flow in the case $ = 0, i.e. 
a rotating flat plate. Other newly introduced similar functions are used to express 
the influence of three-dimensionality of the blade. 
fkl(r) and gm%(y) were computed numerically using the Runge-Kutta method 

on a digital computer with an integration step A? = 0-005 and are shown in 
figures 2 and 3. 

7. The boundary-layer flow along a blade element 
The velocity components given by (39) and (40) are the components in the 

directions of curvilinear co-ordinate axes, though physical ones. But the flow is 
more clearly understood in terms of two components in the directions of the 
main-flow streamline (chordwise component) nnd the cross-flow on the blade 
surface, perpendicular to the main-flow direction (spanwise component). 
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-2 -1  0 1 2 3 4 

g 2 k + l , m ( r )  

FIGURE 3. Functions g , , + , , ( ~ ) .  

The direction cosines of a chordwise unit vector are given by (20) and those of 
a spanwise unit vector are given by 

(41) 
x1 cos $ x3 ls = m, = 0, n, = 

{ (x3)2 + (x1)2cos2 $514 ’ {(x,)2+ (Xl)2COS2$5}~ * 

These values enable one to calculate chordwise and spanwise physical compo- 
nents of the flow from 8, and 8, according to 

aC = (IT 1, + m,m, + nTnl) dl -t (IT 1, + mTm3 + nTn3) a,, 
8, = (~,1,+m,m1)8,+ (ls13+msm1) 8,. 

h 

The magnitude W of the mainstream flow given by (21) is assumed here to be 
constant aloFg a blade element and the non-dimensional forms of 8, and GS 
divided by W are 

i 
1 h 

T x3w 
w.= 
@ {(r/x3)2 + ( wJX3)2}4 

w.= 
$ {(Y/x,)~ + ( u/wx,)~)* + (xl)2 cos2 $14 

x1 cos2 $4 S -+ 
( 42) 

1 h 
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I n  the above equations, x1 and x3 are not independent but related by 
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( x ~ ) ~  cos2 $ + ( x ~ ) ~  = r2,  (43) 
where r is constant for the blade element under consideration and $ must satisfy 
the relation (3). x1 designates a co-ordinate of a point on the blade element con- 
sidered but is not a real distance from the leading edge along the blade element. 
In  fact, the real length 1 is given by 

I = /;{l- (Xl/r)2COS4(L5)-3dX1. (44) 

The wall friction stress rc in the ̂ chordwise direction is expressed as a non- 
dimensional coefficient Cfc times Qp(W )2 as follows: 

A 

where Re = W l / v ,  $o is the value of $ a t  the leading edge of the blade element 
considered, i.e. tan (L50 = U/wr, and T~ and 73 are calculated in terms of the second 
derivatives of the similar functions as follows: 

71 =foN(O) + ( ~ 4 x 3 ) ~  + ( P / X ~ ) ~ ~ X O ) >  
-k (xi /x3)4{f1;o(0)  (P/x1)2.fi2(o) + (P/XI)~~~~(O)] + ..., 

73 = ('1IX3) [d(') f (x1/X3)2 {g;l(O) f ( P / x l ) 2 d 3 ( 0 ) }  

+ (x1/x3)4&(0) + (b/x1)2g:3(0) + ( P / ~ ~ ) ~ g & ( o ) } +  --.I. 

8. Results and discussion 
The solution given above is presented in the form of series expansions in terms 

of two parameters x1/x3 and P / x 3 ,  both of which restrict the convergence of the 
series. The wall stress coefficient, for which the derivatives of velocity variations 
at the wall are responsible, is especially difficult to obtain with sufficient accuracy 
for large values of these two parameters; the restriction on x1/x3, in particular, 
being severe. In  a discussion with emphasis on the influence purely of three- 
dimensionality of the blade configuration, the results for which the contributions 
of terms higher than ( X ~ / X ~ ) ~  are sufficiently small are useful, and are shown 
below. 

Figures 4 and 5 show chordwise and spanwise velocity distributions in the 
boundary layer along some main-flow streamlines. The ordinate 7 * represents 
the distance from the wall and is related to the argument r,~ of aforementioned 
similar functions as follows: 

The spanwise cross-flow grows almost linearly with distance from the leading 
edge, where only the chordwise stream exists for any value of stagger angle $,,. 
This chordwise velocity at the leading edge is given in series form as 

(47) 

andis identical to that of the well-known Blasius flat-plate boundary-layer flow. 

A 

a,lW = c o ~ $ ~ ~ f & )  +tan2 (h).fL2(d + t a n 4 ( $ 0 ) f ~ 4 ( ~ )  + -4 
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w% f i j 8 / J @  

FIGURE 4. Chordwise ( f i j JP f ' )  and spanwise (&/J@) velocity profiles in the boundary layer 
for various downstream positions; $o = tan-'(0.2). -, l/r = 0 (also Blasius flow and 
Horlock & Wordsworth's results) ; --- , Z/r = 0.2; -. -, E/T = 0-3; Go/* = 0 for 
l /r  = 0. 
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5 

4 

1 

I I 
0 0.5 1 .o 

FIGURE 5. Chordwise (Go/@) and spanwise (&@') velocity profiles in the boundary layer for 
, 4o = tan-'(O, 2). various Made angles; Z/r = 0.2. -, Blasius flow : -. -, 4 0 -  - 0; --- 

wt f&/@ 
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The case $, = 0 corresponds to a rotating flat plate, for which earlier results of 
Pogarty (1951), Tan (1953) and McCrosky & Yaggy (1968) are available. The 
curves for 4, = 0 are coincident with Tan’s solution in principle, i.e. the functions 
except for f o ,  fi0 and g, had to be recalculated, because Tan gave only the equa- 
tions thatf,, f k o ,  g, and g,,,, , must satisfy, and not the numerical values. Fogarty 
used only f, and g, to express the chordwise and spanwise velocities and the 
solution for pure hovering motion in the special case of a helicopter rotor blade 
presented by McCrosky & Yaggy adopts only fo, f z 0  and 9,; hence, these two 
solutions are less accurate than Tan’s solution for the present problem. 

The cases rj5 + 0 are the ones newly treated in this work and for these the study 
of Horlock & Wordsworth (1965) is available for comparison. They analysed 
a laminar boundary layer on a rotating thin helical blade of both a turbine and 
a compressor rotor to formulate successfully the effect of stagger. In  that solution, 
a mainflow streamline is assumed to be the intersection of the blade and a circular 
cylinder whose centre-line is the rotating axis and the magnitude of the mainflow 
velocity is constant along these streamlines. These assumptions are the same as 
those of the present study, but in Horlock & Wordsworth’s solution, the blade 
angle is assumed to be constant at any point on the blade surface and, corre- 
spondingly, the upstream flow approaching the rotor is not uniform. This parti- 
cular approaching flow permits the thin helical blade to have similar velocity 
fields in the boundary layer both in the chordwise and spanwise directions. 
Figures 4 and 5 demonstrate that the chordwise velocity distribution varies with 
both stagger angle and distance from the leading edge, contrary to  the prediction 
of Horlock & Wordsworth. In  the present study, a more practical blade configura- 
tion and approaching flow are adopted and this makes the boundary-layer flow 
unequilibrated locally. It must be noted that the growth of secondary flow 
induces the higher rate of entrainment of main-flow fluid of higher energy, causing 
the higher resistance to boundary-layer separation, compared with Blasius flat- 
plate flow. In  figure 4, which shows the dependence on distance from the leading 
edge, the secondary cross-flow grows in the downstream direction and in figure 5, 
which demonstrates the effect of stagger, the secondary flow grows more rapidly 
in cases where the inclination of a blade element to the axial flow direction is 
larger. I n  both cases, the flatter chordwise velocity distribution corresponds to 
the stronger secondary flow. By the way, in figure 5, the case tan $, = co corre- 
sponds to either w = 0 or r = 0, both of which coincide with Blasius flow. 

The chordwise wall shear stress expressed in the form of the coefficient C, Re* 
exhibits larger values for smaller rj5, and larger Zlr, as shown in figure 6. This is 
another way of stating the above-mentioned fact. At the leading edge, C, Re3 takes 
the well-known value for the flat-plate case, i.e. 0.664. Figure 6 indicates that 
when one considers a blade element on one specified cylindrical flow surface, a 
more inclined blade element, namely, one designed for a relatively larger rotating 
speed compared with the axial flow velocity, exhibits a larger wall shear stress, 
increasing nearer to  the trailing edge. But this does not mean immediately that 
the blade tip is more advantageous than the root in regard to  boundary-layer 
separation. On the contrary, if one compares the wall shear stress at stations 
some distance away from the leading edge on different blade elements of one 
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FIUURE 6. Downstream variation of wall stress coefficient C,Rd with blade angle q50. 
- , @o = 0; ---, q50 = tan-l(0.2) ; -. -, q50 = tan-l(0.3) ; - , Horlock & Wordsworth 
(also Blasius flow). 
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FIGURE 7. Comparison of wall shear stress coefficient on two blade elements a t  the stations 
the same distance apart from the leading edge. r* is the radius of the flow surface for which 
$,, = tan-l(0.10). 

particular blade, one finds that the blade element nearer to the hub exhibits 
a larger C, Re$ value, as shown in figure 7, in which the downstreamwise variations 
of the wall shear stress coefficient along two blade elements having q50 = tan--l(O- 1) 
and q50 = tan-l(0.3) are shown, the abscissa being Z/r* and not Zlr, where r* is 
the distance from the rotating axis of the blade element for q50 = tan-1 (0- 1) .  

As for the cross-flow,' Horlock & Wordswoth give the following equation, for 
a compressor rotor blade with prerotation in the approaching flow: 

(48) as/+ = V/r) cos2 q5iMr *) - h(vl *)I> 
where q5i is the blade angle and g ( q * )  and h(q*) are functions only of 7". This 
equation shows that the cross-flow velocity distribution is also similar although 
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FIGURE 8. The cross-flow velocity profile in the boundary layer at the 
leading edge. 0, Horlock & Wordsworth; -, present analysis. 

0 0.1 0 2  0.3 

(& lml (w 
FIGURE 9. Collapsed cross-flow velocity profiles for various downstream positions from the 
leading edge; 4o = tan-l(0.2). -, 1/r = 0 ;  ---, llr = 0.2; -. -, l/r = 0.3. The curve 
for Z/r = 0 is also that from Horlock & Wordsworth. 

the magnitude depends on #i and l/r. The difference between the blade con- 
figurations of Horlock & Wordsworth and the present analysis makes direct 
comparison of (42) and (48) impossible, but in the limit xl+ 0, or a t  the leading 
edge, the blade configurations become identical. Then (42) becomes 

h 

lim (aslW 1 = h l r )  Leos3 #o{fi(r) + tan2 40fL2(r) + tan4 4of4/4(r) + . . .> 
X,+O 

+ cos2 40{d(r) +tan2 4ogk(r) +tan4 $og55(r) + . . .>I, (49) 
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FIGURE 10. Collapsed cross-flow velocity profiles for various blade angles; Z/r = 0.2. 
-, (a 0 -  - 0; _-- , (a, = tan-l(0-1) ; -. -, ~o = tan-'(0.2). HW, Horlock t Wordsworth. 

and (48) remains unchanged. These two are different with respect to not only the 
functions employed but also the independent variable. However, after trans- 
forming the independent variable according to  7" = r/cos* $,, which holds at  the 
leading edge, one finds that the two solutions agree well as shown in figure 8. 
The details of the cross-flow velocity distribution are given in figures 9 and 10: 
downstream variation for a particular blade angle in figure 9 and dependence on 
the blade angle q50 in figure 10. The curves labelled HW were computed from (48) 
and the unlabelled curve for #o = 0 is also Tan's solution. The cross-flow also 
exhibits non-similarity as the counterpart of a non-similar flow field in chordwise 
boundary-layer flow. However, (48), given by Horlock 85 Wordsworth, turns 
out to be a good approximation for the evaluation of the growth rate of cross- 
flow, though exaggerating it a little. 

Blasius flow is an equilibrium flow in the sense that similarity exists. The 
analysis of Horlock & Wordsworth is based on the assumption that the rotating- 
blade boundary-layer flow can be approximated by an equilibrium flow. The 
present analysis indicates that the spanwise cross-flow growth does not prevent 
retention of the equilibrium and acts favourably with regard to the separation of 
the boundary-layer flow. 

9. Conclusions 
The present analysis investigates the influence of the three-dimensionality of 

a rotating blade in a uniform axial flow on the laminar boundary layer which 
develops from the leading edge on its surface. The equation of the flow, which is 
the starting point of the analysis, is deduced very clearly for a complicated three- 
dimensional blade by transforming the equations of motion for a rotating system 
in vector form into tensor form. This way of deriving the basic equations is 
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applicable to any other kind of blade configuration. The blade configuration 
selected in the analysis is a rather practical one and it gives, together with the 
assumed simple mainstream flow, the general features of boundary-layer flow 
on a three-dimensional blade. 

The authors wish to express their sincere gratitude to Prof. S. Murata of Osaka 
University, who has had many encouraging and stimulating discussions with 
them throughout this work. 
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